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Abstract
A straight dislocation in a three-dimensional icosahedral quasicrystal is studied.
A solution considering phonon–phason coupling is observed; the phonon–
phonon, phason–phason and phonon–phason interactions are revealed, in which
a comparison between the present solution and other approximate solutions
including the classic solution for crystals is given, and shows that the coupling
effect is significant.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since the discovery of the quasicrystal, the experimental and theoretical studies on the new
structure of solids have made a great achievement. Almost 200 individual quasicrystals
in different alloy systems have been produced so far. Many among them are stable
thermodynamically, so the quasicrystal becomes a new material. The mechanical behaviour
including elasticity and defects of the material is an important field of study, in which the theory
and experimental observation of defects such as dislocations were reported [1–6]. According to
the continuum theory of dislocations in the general scheme of quasicrystal elasticity theory [7],
the explicit expressions for the elastic field, in particular for the displacement field, induced
by a dislocation have been obtained in several quasicrystals [8–13]. The first work in this
area may be that of De and Pelcovits [14], who analysed a dislocation in a planar pentagonal
quasicrystal and gave the analytical expressions. Some analysis methods such as the Green
function method [8], the Eshelby method [11] and the displacement function method [12] have
been developed to derive analytical expressions for dislocation-induced elastic field in various
quasicrystal systems. Furthermore, Fan et al [15] developed the theory on interaction between
a dislocation group (also called a dislocation pile-up) and a crack; this creates the study on
nonlinear fracture theory of quasicrystalline materials.

Up to now among 200 quasicrystals there are 96 kinds of icosahedral quasicrystals and 65
kinds of decagonal ones. This shows that the icosahedral quasicrystals play a central role in
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these materials. The icosahedral quasicrystal is a three-dimensional one, with a huge number
of field variables and field equations involving elasticity. Since the discovery there is no exact
solution for the dislocation. Yang et al [16] developed the Green function method to study
the solution of dislocation in the icosahedral quasicrystal, but only an approximate solution
was obtained, in which the authors assumed that the coupling elastic constant R = 0, i.e. the
phonon–phason is decoupled. The approximation leads to the result, that is, the phonon field
and the phason field are independent from each other in the solution. Furthermore, the phonon
component u3 is independent from u1, u2 in their solution. But it is well known that the
coupling effect between phonon and phason is very important. According to group theory, the
most useful mathematical tool describing symmetry, among all quasicrystal systems observed
to date, excepting a unique exception—the two-dimensional 12-fold symmetry quasicrystal,
phonon and phason degrees of freedom are coupled. So the coupling effect is significant for
studying the physical properties including mechanical properties for all quasicrystals (apart
from the two-dimensional 12-fold symmetry quasicrystal) including icosahedral quasicrystals.

In order to illustrate this, we can look for the results of an uncoupled solution given by Yang
et al [16]. This is the first solution of dislocation in icosahedral quasicrystals, and presents the
meaning in the development of theory of dislocation of quasicrystals. The phonon field of the
solution of Yang et al is quoted as equation (17) of our present paper; readers can find that
the solution is a pure classic dislocation solution, which is independent from the phasons. The
phason field given by Yang et al [16] is independent from the phonon field too. The nature of
icosahedral quasicrystals has not been revealed in their solution. To further develop the theory
of dislocation of quasicrystals, study exploring the realistic phonon–phonon, phason–phason
and phonon–phason interactions is necessary.

This paper considers a straight dislocation in an icosahedral quasicrystal, where the
dislocation line is parallel to the x3-direction. A general solution is suggested by introducing
a displacement function for a three-dimensional icosahedral quasicrystal given by Fan and
Guo [17]. The analytical expressions for the displacement field induced by a dislocation are
obtained based on the displacement function and Fourier analysis as follows.

2. General solution of the governing equations for plane elasticity of icosahedral
quasicrystals

According to the description of a n-dimensional quasicrystal as a quasi-periodic structure which
is periodic in (3 + n)-dimensional space (1 � n � 3), the (3 + n)-dimensional space can be
divided into the direct sum of two orthogonal subspaces, one being three-dimensional physical
or parallel space, E‖, and the other being n-dimensional perpendicular or complementary space,
E⊥. Therefore, for each quasicrystal, there are two orthogonal coordinate systems, one in E‖
and the other in E⊥. In addition to the usual phonon displacements ui and phonon strains εi j

describing the local shift of atoms in E‖, one must introduce the phason displacements wi and
phason strains wi j to describe the local rearrangements of atoms in E⊥. In this framework, the
generalized Hooke law stands for [7]

σi j = Ci jklεkl + Ri jklwkl Hi j = Rkli j εkl + Ki jklwkl (1)

with

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
wi j = ∂wi

∂x j
(2)

where σi j and Hi j are stresses in E‖ and E⊥ respectively, Ci jkl and Ki jkl elastic constants
in phonon and the phason field respectively, and Ri jkl the phonon–phason coupling elastic
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constants. If the coordinate system can be chosen with x3-axis pointing torwards a vertex of an
icosahedral quasicrystal, we have

Ci jkl = λδi jδkl + μ
(
δikδ j l + δilδ jk

)
(3)

and [K ] and [R]

[K ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K1 0 0 0 K2 0 0 K2 0
0 K1 0 0 −K2 0 0 K2 0
0 0 K2 + K1 0 0 0 0 0 0
0 0 0 K1 − K2 0 K2 0 0 −K2

K2 −K2 0 0 K1 − K2 0 0 0 0
0 0 0 K2 0 K1 −K2 0 0
0 0 0 0 0 −K2 K1 − K2 0 −K2

K2 K2 0 0 0 0 0 K1 − K2 0
0 0 0 −K2 0 0 −K2 0 K1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[R] = R

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 1 0
−1 −1 1 0 0 0 0 −1 0
0 0 −2 0 0 0 0 0 0
0 0 0 0 0 −1 1 0 −1
1 −1 0 0 1 0 0 0 0
0 0 0 −1 0 −1 0 0 1
0 0 0 0 0 −1 1 0 −1
1 −1 0 0 1 0 0 0 0
0 0 0 −1 0 −1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

where λ and μ are the Lamé constants.
Now consider a straight dislocation along the x3-axis; the field variables are independent

from coordinate x3, so the problem is reduced to a two-dimensional one. Fan and Guo [17]
developed a displacement potential function method. In this paper we use the results but add
some description, that is, for a plane elasticity problem in the x1x2 plane of an icosahedral
quasicrystal the phonon and phason displacement can be expressed in terms of G(x, y), the
displacement potential function, as follows (x1 = x, x2 = y):

u1 = R
∂2

∂x∂y
∇2∇2[α�1 + β�2]G

− Rc0
∂2

∂x∂y



[
(3μ − λ)

∂4

∂x4
+ 10(λ + μ)α

∂4

∂x2∂y2
− (5λ + 9μ)

∂4

∂y4

]
G

u2 = R∇2∇2

[
α

∂2

∂y2
�1 − β

∂2

∂x2
�2

]
G

− Rc0

2

[
(λ + 2μ)

∂6

∂x6
− 5(2λ + 3μ)α

∂6

∂x4∂y2
+ 5λ

∂6

∂x2∂y4
+ μ

∂6

∂y6

]
G

u3 = −c1
∂2

∂x∂y

[
(λ + μ)R2
2�1�2 − (λ + 2μ)α

∂2

∂y2
�2

1 − μβ
∂2

∂x2
�2

2

]
G

w1 = ∂2

∂x∂y
∇2

[−(λ + μ)R2�1�2 + 2c0μ(λ + 2μ)
2∇2
]

G

w2 = ∇2

[
μ(λ + 2μ)c0


2
2∇2 − (λ + 2μ)α
∂2

∂y2
�2

1 − μβ
∂2

∂x2
�2

2

]
G

w3 = −c2
∂2

∂x∂y

[
(λ + μ)R2
2�1�2 − (λ + 2μ)α

∂2

∂y2
�2

1 − μβ
∂2

∂x2
�2

2

]
G;

(5)

then the field equations mentioned above will be satisfied if

∇2∇2∇2∇2∇2∇2G(x, y) + ∇2 LG(x, y) = 0 (6)

3



J. Phys.: Condens. Matter 19 (2007) 236216 A-Y Zhu et al

where

α = μK1 − R2 β = (λ + 2μ)K1 − R2

c0 = μK 2
2 + (K1 − 3K2)R2

μ(K1 − K2) − R2
c1 = (K1 − K2)R

μ(K1 − K2) − R2
c2 = (K2μ − R2)

μ(K1 − K2) − R2

�1 = 3
∂2

∂x2
− ∂2

∂y2
, �2 = 3

∂2

∂y2
− ∂2

∂x2
,

∇2 = ∂2

∂x2
+ ∂2

∂y2
, 
2 = ∂2

∂x2
− ∂2

∂y2
(7)

L = c0 R

μβ

[
− ∂10

∂x10
+ 5

(
4 − 5

λ + 2μ

μ

α

β

)
∂10

∂x8∂y2
− 10

(
11 − 10

λ + 2μ

μ

α

β

)
∂10

∂x6∂y4

+ 10

(
10 − 11

λ + 2μ

μ

α

β

)
∂10

∂x4∂y6
− 5

(
5 − 4

λ + 2μ

μ

α

β

)
∂10

∂x2∂y8

− λ + 2μ

μ

α

β

∂10

∂y10

]
. (8)

If R2/(μK1) � 1 (this is natural, because the coupling elastic constant is less than those
of phonon and phason), equation (7),

β/α → 1. (9)

Substituting (9) into (8) then into (6), we find that

∇2∇2∇2∇2∇2∇2G(x, y) = 0. (10)

The problem for determining displacement and stress fields induced by a dislocation is
reduced to solving the boundary value problem of equation (10) under appropriate boundary
conditions.

3. Solution to a dislocation in an icosahedral quasicrystal

Utilizing the formulae of a general solution suggested above and the Fourier transform
technique, the analytical solution for a dislocation along the x3-axis in an icosahedral
quasicrystal can be obtained. Considering a dislocation with the core at the origin, the Burgers
vector is denoted as b = b‖ ⊕ b⊥ = (b‖

1, b‖
2, b‖

3, b⊥
1 , b⊥

2 , b⊥
3 ), where∮

du j = b‖
j

∮
dw j = b⊥

j (11)

in which the integrals in (11) should be taken along the Burgers circuit surrounding the
dislocation core in E‖ [18]. Here we calculate only the elastic field for a typical problem,
corresponding to b‖

1 �= 0, b⊥
1 �= 0, b‖

2 = b‖
3 = 0, b⊥

2 = b⊥
3 = 0.

For simplicity we can solve a half-plane problem, by considering symmetry and anti-
symmetry of relevant field variables, so there are the following boundary conditions including
the dislocation condition:

σ22(x, 0) = σ32(x, 0) (12a)

= 0 (12b)

H22(x, 0) = H32(x, 0) (12c)

= 0 (12d)∮
du1 = b‖

1 (12e)
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∮
dw1 = b⊥

1 . (12 f )

In addition there are boundary conditions at infinity:

σi j (x, y) → 0 Hi j(x, y) → 0
√

x2 + y2 → ∞. (13)

Performing the Fourier transform to equation (10) and solving the corresponding ordinary
differential at the transformed domain then taking the Fourier inversion, we obtain the solution
as follows:

u1 = 1

2π

(
b‖

1 arctan
y

x
+ c12

xy

r 2
+ c13

xy3

r 4

)

u2 = 1

2π

(
−c21 ln

r

r0
+ c22

y2

r 2
+ c23

y2(y2 − x2)

2r 4

)

u3 = 1

2π

(
−c31 arctan

y

x
+ c32

xy

r 2
+ c33

xy3

r 4

)

w1 = 1

2π

(
b⊥

1 arctan
y

x
+ c42

xy

r 2
+ c43

xy3

r 4

)

w2 = 1

2π

(
−c51 ln

r

r0
+ c52

y2

r 2
+ c53

y2(y2 − x2)

2r 4

)

w3 = 1

2π

(
−c61 arctan

y

x
+ c62

xy

r 2
+ c63

xy3

r 4

)

(14)

in which r 2 = x2 + y2, r0 is the radius of the dislocation core and ci j are constants,

c12 = 2c0(μ(2R2 + c0μ)(λ2 + 3λμ + μ2)b‖
1 + R(−e(λ + μ) + 2μc0(λ + 2μ)2)b⊥

1 )

−e(2e + μc0(λ + 2μ)) + μc0(λ + 2μ)(e + 2μc0(λ + 2μ))

c13 = 2c0 R(λ + μ)(2Rμ(λ + μ)b‖
1 + 2μc0(λ + 2μ)b⊥

1 )

−e(2e + μc0(λ + 2μ)) + μc0(λ + 2μ)(e + 2μc0(λ + 2μ))

c21 = (2c2
0μ

3(λ + 2μ) − 2e2)b‖
1 + 2c0 R(λ + 3μ)eb⊥

1

−e(2e + μc0(λ + 2μ)) + μc0(λ + 2μ)(e + 2μc0(λ + 2μ))

c22 = 2c0(−μ2(λ + μ)(−2R2 + c0(λ + 2μ))b‖
1 + R(−(λ + μ)e + 2c0μ

2)b⊥
1 )

−e(2e + μc0(λ + 2μ)) + μc0(λ + 2μ)(e + 2μc0(λ + 2μ))

c23 = 2c0 R(λ + μ)(2Rμ(λ + μ)b‖
1 + 2c0μ

2b⊥
1 )

−e(2e + μc0(λ + 2μ)) + μc0(λ + 2μ)(e + 2μc0(λ + 2μ))

c31 = [−3c1e{2(c0μ + 7e)μc0(λ + 2μ)b‖
1

+ R(54c2
0(λ

2 + 3λμ + μ2) − 2(α − β)(e + μc0(λ + 2μ)))b⊥
1 }]

× [4c0 R(−e(2e + μc0(λ + 2μ)) + μc0(λ + 2μ)(e + 2μc0(λ + 2μ))]−1

c32 = 3c1e(2μ(−e + μc0(λ + 2μ))b‖
1 + R(−2e + 2μc0(λ + 2μ))b⊥

1 )

−e(2e + μc0(λ + 2μ)) + μc0(λ + 2μ)(e + 2μc0(λ + 2μ))

c33 = −3ec1(2Rμ(λ + μ)b‖
1 + 2μc0(λ + 2μ)b⊥

1 )

−e(2e + μc0(λ + 2μ)) + μc0(λ + 2μ)(e + 2μc0(λ + 2μ))

c42 = −2e(2Rμ(λ + μ)b‖
1 + 2μc0(λ + 2μ)b⊥

1 )

−e(2e + μc0(λ + 2μ)) + μc0(λ + 2μ)(e + 2μc0(λ + 2μ))

c43 = 0

5
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Figure 1. The displacement u1/b‖
1 versus x for different coupling elastic constants.

c51 = −{−4eμ2c0(λ + 2μ)b‖
1 + R(2(λ + 2μ)(e + 0.5μc0) + μ(2β2μ + 2c2

0(λ + 2μ)2

+ c0(λ + 2μ)(−βμ + R2(λ + μ)))b⊥
1 }

× {R(−e(2e + μc0(λ + 2μ)) + μc0(λ + 2μ)(e + 2μc0(λ + 2μ)))}−1

c52 = − 2e(2Rμ(λ + μ)b‖
1 + 2μc0(λ + 2μ)b⊥

1 )

−e(2e + μc0(λ + 2μ)) + μc0(λ + 2μ)(e + 2μc0(λ + 2μ))

c53 = 0

c61 = [−3c2e{(2(c0μ + 7e)μc0(λ + 2μ)b‖
1 + R(54c2

0(λ
2 + 3λμ + μ2)

− 2(α − β)(e + μc0(λ + 2μ)))b⊥
1 )}]

× [4c0 R(−e(2e + μc0(λ + 2μ)) + μc0(λ + 2μ)(e + 2μc0(λ + 2μ))]−1

c62 = 3ec2(2μ(−e + μc0(λ + 2μ))b‖
1 + R(−2e + 2μc0(λ + 2μ))b⊥

1 )

−e(2e + μc0(λ + 2μ)) + μc0(λ + 2μ)(e + 2μc0(λ + 2μ))

c63 = −3ec2(2Rμ(λ + μ)b‖
1 + 2μc0(λ + 2μ)b⊥

1 )

−e(2e + μc0(λ + 2μ)) + μc0(λ + 2μ)(e + 2μc0(λ + 2μ))
(15)

in which e = −(λ + μ)R2.
We can see that the phonon–phonon, phason–phason and phonon–phason interaction is

very evident, so the solution (14) is quite different from the solution given by Yang et al [16]
(whose solution for the phonon displacement field is quoted in the following, see formula (17)),
where they took R = 0, i.e., they assumed the phonon and phason are decoupled, so the
solution for the phonon is the same as the classic solution for crystals. It is obvious that our
solution given by (14) explores the realistic case for quasicrystals, quite different from that of
crystals. To illustrate the coupling effect we give some numerical results in figures 1 and 2 for
the normalized displacement u1/b‖

1 versus x and y respectively, in which the results exhibit the

6
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Figure 2. The displacement u1/b‖
1 versus y for different coupling constants.

influence of parameter R is significant. In the calculation we take the data of elastic moduli as

λ = 2.3433, μ = 0.5741, K1 = 1.22, K2 = 0.24 (1012 dyn cm−2)

and the phonon–phason coupling elastic constant for three different cases, i.e. R/μ =
0, R/μ = 0.08 and R/μ = 0.1, in which the first one corresponds to the decoupled case. The
results are depicted by figure 1 for u1/b‖

1 versus x and figure 2 for u1/b‖
1 versus y, respectively.

The figures show that the coupling effect is very important; the displacement is increasing
with the growth of value of R.

For the other two typical problems, in which the Burgers vector of a dislocation is denoted
by (0, b‖

2, 0, 0, b⊥
2 , 0) and (0, 0, b‖

3, 0, 0, b⊥
3 ) respectively, a complete similar consideration

will yield similar results, which are omitted here. Alternatively, the expressions are denoted
as u(2)

j , w
(2)
j and u(3)

j , w
(3)
j . Therefore, the explicit analytical expressions for elastic field

for a dislocation (b‖
1, b‖

2, b‖
3, b⊥

1 , b⊥
2 , b⊥

3 ) in an icosahedral quasicrystal can be obtained by
superposition of the corresponding expressions for the elastic fields for (b‖

1, 0, 0, b⊥
1 , 0, 0),

(0, b‖
2, 0, 0, b⊥

2 , 0) and (0, 0, b‖
3, 0, 0, b⊥

3 ), namely

u j = u(1)

j + u(2)

j + u(3)

j w j = w
(1)

j + w
(2)

j + w
(3)

j i, j = 1, 2, 3. (16)

4. Discussion and conclusion

The complete analysis on dislocation of icosahedral quasicrystals has been offered in
the previous sections, in which the phonon–phonon, phason–phason and phonon–phason
interactions are revealed; in particular, the coupling effect between phonon and phason degrees
of freedom has been explored thoroughly. One can see that the interaction is important, which
could not be ignored. Of course, the feature of the icosahedral symmetry group which is

7
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infracted by strain and stress tensors and the five independent elastic constants is described
by the solution of (14) and (15).

If R = 0, wi = 0, our solution is exactly reduced to the solution of dislocation of crystals,
i.e.

u1 = b‖
1

2π

(
tg−1 y

x
+ λ + μ

λ + 2μ

xy

r 2

)
+ b‖

2

2π

(
μ

λ + 2μ
ln

r

r0
+ λ + μ

λ + 2μ

x2

r 2

)

u2 = − b‖
1

2π

(
μ

λ + 2μ
ln

r

r0
+ λ + μ

λ + 2μ

x2

r 2

)
+ b‖

2

2π

(
tg−1 y

x
− λ + μ

λ + 2μ

xy

r 2

)

u3 = b‖
3

2π
tg−1 y

x

(17)

which is the well known classical solution. This proves the correctness of our formalism and
derivation from one direction.

The displacement potential function formulation proposed by Fan and Guo [17] sets the
basis for solving the elasticity and defect problem of icosahedral quasicrystals. The formulation
greatly simplifies the solution process. In the subsequent steps a systematic Fourier analysis is
developed, which provides a constructed procedure to find the analytic solution; it is effective
not only for the dislocation problem, but also for more complicated mixed boundary value
problems (e.g. Griffith crack problems); see, e.g., [19]. The present solution is explicit and
with closed form.

The present solution can be used as a fundamental solution for a dislocation in an
icosahedral quasicrystal. Therefore, many elasticity problems in an icosahedral quasicrystal
can be directly solved with the aid of this fundamental solution by superposition.
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